ENANTIOSELECTION VIA BIRCH REDUCTION-ALKYLATION OF A CHIRAL ANTHRANILIC ACID DERIVATIVE. SYNTHESIS OF ENANTIOMERICALLY PURE AMINOCYCLOHEXANES

Arthur G. Schultz,* Patrick J. McCloskey, and Padmanabhan Sundararaman Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12181

James P. Springer $^{
m 1}$ Merck, Sharp and Dohme Research Laboratories, Rahway, New Jersey 07065

<u>Summary</u>: The first method for preparation of enantiomerically pure aminocyclohexanes by <u>Birch</u> reduction-alkylation of a chiral anthranilic acid derivative is described; stereochemistry of alkylation is demonstrated by X-ray structural studies with 2b.

Herein we report the first method for preparation of enantiomerically pure aminocyclo-hexanes by Birch reduction-alkylation of a chiral anthranilic acid derivative; <u>e.g.</u>, $\underline{1} \rightarrow \underline{2} \rightarrow \underline{4}$. This two step adaptation of the chiral auxiliary technique² features inexpensive reagents and a simple solvent extraction procedure for isolation of the aminocyclohexane.

Heterocycle $\underline{1}$ is prepared by reaction of isatoic anhydride with L-proline.³ Birch reduction of $\underline{1}$ is performed with potassium (4.4 equiv) in NH₃-THF solution in the presence of $\underline{\text{tert}}$ -butanol (2 equiv). After cooling to -78°C, the characteristic blue color is

dissipated by addition of pentadiene, after which the alkylation reagent is added (2-3 equiv); upon warming to refluxing ammonia temperature the reaction mixture is stirred for 1.5 h. Conventional reaction work-up and recrystallization provides analytically pure $\frac{2b-2e}{2}$ in yields ranging from good to excellent (Table I)⁴. Protonation of Birch reduced $\frac{1}{2}$ with NH4Cl gives β,γ -unsaturated amide $\frac{2a}{2}$. The stereochemistry of $\frac{2a-2e}{2}$ follows from a single crystal X-ray structure determination of $\frac{2b}{2}$ and $\frac{1}{2}$ H NMR spectral comparisons within the series.

Table I. Stereoselective Birch Reduction-Alkylation of $\underline{1}$

protonation or alkylation reagent	isolated yields of <u>2a-2e</u> , % ^a mp,°C	
NH4C1	<u>2a</u> :73	185-6
MeI	<u>2b</u> :54	245.5-7.0
EtI	<u>2c</u> :68	220.5-1.5
C ₃ H ₅ Br	<u>2d</u> :62(88) ^b	176-7
PhCH ₂ Br	<u>2e</u> :68	170-1

^aYields are for analytically pure products and are based on 1. ^bThe allyl derivative, 2d, also is obtained by alkylation with 1,3-dibromopropane.

Suitable crystals of $\underline{2b}$ for X-ray diffraction studies formed as large needles from an ethyl acetate solution. The space group symmetry was P2₁ with $\underline{a}=9.654(2)$ Å, $\underline{b}=9.426(4)$ Å, $\underline{c}=13.541(4)$ Å and $\underline{\beta}=96.88(2)^{\circ}$ for Z = 4. Of the 1772 reflections measured with an automatic four circle diffractometer equipped with Cu radiation, 1423 were observed (I > 3σ I). The structure was solved with a multi-solution tangent formula approach and difference Fourier analysis and refined using full-matrix least-squares techniques. Hydrogens were assigned isotropic temperature factors corresponding to their attached atoms. The function $\Sigma\omega(|F_0|-|F_C|)^2$ with $\omega=1/(\sigma F_0)^2$ was minimized to give an unweighted residual of 0.049. The temperature parameters for C3 and C3° were abnormally large indicating a certain amount of disorder in their positions. As a consequence the bond distances and angles involving C3 and C3° have significant deviations from generally accepted values. Hydrogens attached to C3 and C3° were kept in calculated positions because they refine poorly. The two independent molecules have virtually the same conformation shown in Figure 1.

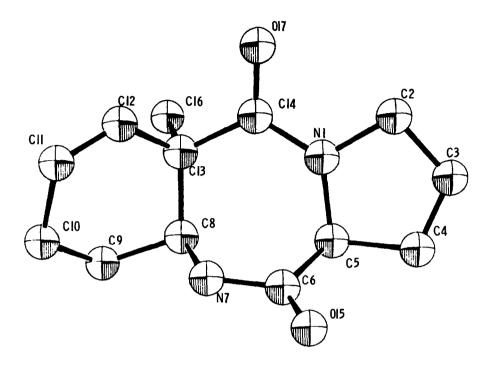


Figure 1. A perspective drawing of <u>2b</u> derived from the X-ray coordinates with hydrogens omitted for clarity.

Removal of the chiral auxiliary is accomplished by treatment of $\underline{2a-e}$ with 50% aqueous sulfuric acid at 100° C for \sim 6 h. Pure amino lactones $\underline{4}$ are obtained after partitioning reaction components between chloroform and aqueous sodium bicarbonate solutions (Table II). We presume that protiolactonization occurs after hydrolysis of the amide bonds in $\underline{2}$. With the allyl derivative $\underline{2d}$, protiolactonization occurs at the side chain to give spirolactone $\underline{3}$ as a mixture of diastereoisomers. Remarkably, the unsubstituted amino lactone $\underline{4a}$ is obtained by this procedure, albeit in an unoptimized 34% yield.

Table II. Removal of Chiral Auxiliary from 2

compound	isolated yields of aminolactones, %	
<u>2a</u> (R=H)	<u>4a</u> :34	
<u>2b</u> (R=Me)	<u>4b</u> :62	
<u>2c</u> (R=Et)	<u>4c</u> :82	
2d(R=CH ₂ =CHCH ₂)	<u>3</u> :82	
2e(R=PhCH ₂)	<u>4e</u> :83	

Amino lactones 4 are converted to keto lactones 7 by biomimetic oxidative deamination.6 For example 7(R=Et) is obtained in 82% isolated yield (mp 54-55°C) by sequential treatment of 4c with 4-formy1-1-methylpyridinium benzenesulfonate and 1,5-diazabicyclo[4.3.0]non-5-5-ene (DBN). This experiment demonstrates that 2-alkylated cyclohexanone derivatives, 7, may be obtained from anthranilic acid by use of L-proline (5) as the chiral auxiliary. whereas, we have previously shown that 2-alkylated cyclohexanone derivatives of opposite absolute configuration (e.g., 8) are available from salicylic acid by use of the chiral auxiliary L-prolinol (6). 7 L-Prolinol is prepared from L-proline by lithium aluminum hydride reduction; 8 thus, both enantiomeric series 7 and 8 are obtained from the same natural chiral auxiliary source.9

HN HO₂C
$$\dot{H}$$

5

6

0H

R

CO₂R

8

Acknowledgment. This work was supported by the National Institutes of Health (GM 26568).

References and Notes

- Author to whom inquiries regarding X-ray crystallographic analysis should be directed. 1.
- 2. "Asymmetric Synthesis - A Multivolume Treatise"; Morrison, J. D., Ed., Academic Press: New York, 1984.
- 3. (a) Carabateas, P. M.; Harris, L. S. <u>J. Med. Chem.</u> 1966, <u>9</u>, 6. (b) Kim, D. H. <u>J.</u>
- Het. Chem. 1975, 12, 1323.

 Less than 4 equiv of potassium in the Birch reduction step currently results in synthetically unacceptable mixtures of dihydro- (both α - and γ -enolate alkylation observed) and tetrahydro-derivatives. Details of this study and mechanistic considerations are reserved for the full account of this work.
- The following library of crystallographic programs was used: MULTAN 80. University of 5. York, York, England (1980); Structure Determination Package Plus Vl.1, Enraf-Nonius Corporation, Delft, Holland (1983); ORTEP-II, Oak Ridge National Laboratory, Oak Ridge, Tennessee (1970).
- (a) Buckley, T. F.; Rapoport, H. J. Am. Chem. Soc. 1982, 104, 4446. (b) Steinberg, G. M.; Poziomek, E. J.; Hackley, B. E., Jr. J. Org. Chem 1961, 26, 368. Schultz, A. G.; Sundararman, P. Tetrahedron Letters 1984, 25, 4591. Enders, D.; Eichenauer, H. Angew. Chem. Int. Ed. Engl. 1976, 15, 549. Compounds 2a, 2b, 2c, 2d, 2e, 4a, 4b, 4c, 4e, and 7(R=Et) gave satisfactory combustion analyses. 6.
- 7.
- 8.
- combustion analyses.

(Received in USA 28 December 1984)